模型試験の有効出力と実海域上での軸出力との比較検討

東京海洋大学 〇鳥居 大晃 木船 弘康

1. はじめに

船の推進に必要な動力を示す値として,有効出力 (EHP, Effective horsepower)がある.従前,EHP は模型船の曳航試験によって推定されてきた.一方, 近年では FEM 解析手法の高度化によりコンピュータ 上での推定も可能になりつつあるが,基本的に実測 はなされない.

井上らの先行研究⁽¹⁾においては,可変ピッチプロ ペラ(CPP, Controllable Pitch Propeller)船の軸 出力(SHP, Shaft horsepower)から翼角中立時の軸 出力(RHP, Rotational horsepower と仮称)を差し 引いた値(出力 X と仮称)について議論されている. この中で出力 X は対水速力と必要動力との関係を示 す平面状において切片ゼロとなり,指数関数的な増 加傾向を持つことが示され,EHP との強い関連性が 示唆された.先行研究における,出力 X と EHP を比 較した実験結果を Fig.1 に示す.しかし,実測デー タのばらつきから,それらの関連性について十分な 検討がなされていない.

本論では,実測データから環境要因(風および波) と船体の汚損による影響を排除して出力 X と EHP と の比較を行い,先行研究で示された関連性について 再検討した.

Fig. 1 Power X and EHP to Ship speed in Prior study⁽¹⁾

2. データベースの概要

供試船 A(Table 1 に仕様を記載)に関する航行中 の各種記録データ(毎秒記録)を解析対象とした. そのうち,本論では 2010 年~2019 年の 10 年分につ いて解析を行った.

Item	Parameter
Length overall	49.93[m]
Breadth	10[m]
Draught	3.0[m]
Type of Propeller	4 blade CPP
Propeller Speed	300[rpm]
Ship Speed in Trial	14.8[kt]
SHP in Trial	1126.1[kW]
Year of Delivery	1987

3. 翼角中立時の軸出力

3.1 RHP の定義

井上らは、CPP が翼角中立時に吸収する軸出力を CPP の回転維持に必要な動力であると仮定し、回転 動力 (RHP, Rotational horsepower) と仮称した.

また,回転動力を海水との摩擦による動力損失と見 なして軸回転数の関数と仮定し,実験を通じて,次 式が概略成立することを示した.

$$RHP = f(N) = aN^3 \tag{1}$$

ただし, aは定数, N[rpm]は軸回転数.

3.2 RHP の算出方法

著者らは,供試船が出航直前に翼角中立の状態で数 +秒から数分間プロペラを回転させていることに着 目し,その時間のデータを抽出して翼角中立時の軸 出力のデータを得た.

供試船の翼角中立時のピッチ角 θ はおよそ -1.8[deg]だが, 乗組員の操縦ハンドルの操作によっ てずれが生じているため, ピッチ角が-2.5 \leq θ [deg] \leq -1.0の範囲を翼角中立とみなしてデータ を抽出し, 各出航時における平均値をとった.

3.3 RHP の解析結果

供試船は毎年9月上旬に入渠している.年ごとの 出渠後の経過日数と RHP の関係を Fig. 2 に示す.

図から明らかなように、RHP は出渠直後が最も低 く、出渠後の日数が経過するにつれて高くなってい る.年によって変化率は異なるものの、1年間で40 ~70%程度 RHP が増加していることがわかる.RHP の 増加傾向を見ると、出渠後3ヶ月と入渠前3ヶ月ほ どの期間は RHP が増加しているが、それ以外の期間 では RHP の変化が小さい傾向にある.本研究で解析 対象とした期間では、供試船は毎年9月に入渠して いた.このことから6~11月は RHP が増加し、12~ 5月は RHP の変化が小さくなる傾向が明らかである.

鈴木らによる, CPP 装備船での船底汚損に関する 調査⁽²⁾によれば,プロペラにはコケムシとフジツボ といった生物が付着し,出力に影響を及ぼす.供試 船についても,海洋生物の付着を原因とするプロペ ラの汚損によって RHP が増加していることが考えら れ,付着生物の成長速度と海水温度の間に関連性が あるために,季節によって RHP の出力増加率は変化 していると考えられる.

Fig. 2 Trend of RHP

4. 出力 X

4.1 環境要因と船体汚損

航海中の SHP から, RHP を差し引いた値を出力 X と仮称する.

$$X = SHP - RHP \tag{2}$$

3.1節において定義したように,RHP をプロペラが 流体中で回転を維持するのに必要な動力とするなら ば,出力Xは船体が流体中をある速度で航走するの に要した動力として見なすこともできる.これは, 平水中を航走する船体が抵抗Rに打ち勝って速度v で進行するときの船体の運動による仕事(EHP)に近 い意味を持つ可能性もある.

しかし,実際には風や波といった環境要因や,船体の汚損や経年劣化による影響により,要求される出力が増大(Δ*P*)する⁽³⁾.

$$X + \Delta P = SHP - RHP \tag{3}$$

ΔPは様々な要素から成るが,例えば代表的な要素として次式が表現される.

$$\Delta P = \Delta P_{\text{wind}} + \Delta P_{\text{wave}} + \Delta P_{\text{fouling}} \tag{4}$$

ここで、ΔP_{wind}:風による出力変化 ΔP_{wave}:波による出力変化 ΔP_{fouling}:汚損による出力変化

これらの要素による出力変化を推定する方法は, 様々な研究⁽⁴⁾⁽⁵⁾⁽⁶⁾によって提案されているが,本研 究で利用した観測データは,波に関するデータ(波 高,波長,出会い周期など)が不十分であったため, 波の影響を推定することが難しかった.そこで,逆 にΔPをほぼ無視できるような環境条件のデータに ついて抽出することとした.

4.2 解析対象データの絞り込み

先述した通り,出渠後日数が経過するにつれてプ ロペラの汚損が生じていることが分かり,同様に船 体にも汚損が生じていると推察される.そこで,船 体汚損による出力増加(ΔP_{fouling})の影響を排除する ために,出渠後 30 日以内の航海データのみを利用す ることにした.

また,増減速時の出力変化や回頭時の抵抗増加に よる出力増加といった影響を排除する必要がある. そこで,以下の方法で機関が定常状態であると見な せるようなデータを抽出して解析を行った.まず, 1秒ごとに記録されているデータのうち,船速v,翼 角θ,機関回転数N,舵角φについて,異常値を取り 除くために上下それぞれ 5%のデータを除外した上 で5分間の移動平均値を算出した.ここで,船速vを 例に算出方法を示す.

ある時刻 t_1 の移動平均の算出に用いるデータセットは(5),(6)式で示される.ここで,nは移動平均を とるためのデータの総数であり,n = 301である.

$$\{v_{(t_1-k)}, v_{(t_1-k+1)}, \dots, v_{(t_1+k)}\}$$
(5)

$$k = \frac{n-1}{2} \tag{6}$$

これを,データの大きさ順に並べると,次式のよう に示されるものとする.

$$\{v_{(1)}, v_{(2)}, \dots, v_{(i)}, \dots, v_{(n)}\}$$
(7)

(7)式について、(8)、(9)式のように上下約5%のデ ータを除外した平均値をとることで、時刻 t_1 での船 速の移動平均値 $v_{MA(t_1)}$ を算出した.

$$v_{MA(t_1)} = \frac{1}{n-2l} \sum_{i=1+l}^{n-l} v_{(i)}$$
(8)

$$l = 0.05n = 15 \tag{9}$$

次に,移動平均値の一秒ごとの変化量を算出し, (10)式のように移動平均値の変化量がある閾値V_{TH} を下回るデータについて,運転状態が安定している とみなして採用した.

$$V_{TH} \ge \left| v_{MA(t_1)} - v_{MA(t_1-1)} \right| \tag{10}$$

さらに、風や波による影響($\Delta P_{wind}, \Delta P_{wave}$)を排除 するために、真風速からビューフォート風力階級を 算出し、風力階級が3以下ならば風や波による影響

Fig.3 Power X and EHP to Ship Speed

を無視できると仮定して,風力階級が3以下のデー タを抽出した.

以上のように解析対象とするデータの絞り込みを 行い,その上で(2)式を用いて出力 X を算出した. Fig.3は,縦軸に出力,横軸に対水速力をとり,出力 X と EHP との関係を示したものである.

4.3 出力 X の解析結果

Fig.3 において, 観測データから抽出した出力 X の値と EHP には同程度の傾向は見られるものの, ず れの量も一定程度確認できる.

先行研究では、模型船の曳航試験によって求められ た有効出力 EHP と出力 X を比較していた.しかし、 自航状態にある実船の出力 X を EHP と単純比較する のは適切ではない.本研究では、推力減少係数tと伴 流係数wを用いて推力出力(THP, Thrust horsepower)を算出し、出力 X と THP との比較も行った. なお、推力減少係数tと伴流係数wは供試船の完成図 書に示された値を引用した.

$$THP = EHP \times \frac{1 - w}{1 - t} \tag{11}$$

また,出力はほぼ同じであるものの船速の変動幅 が大きいデータ群が Fig.3 中に見られる.そこで, 出力の一の位を四捨五入してグループ化し,箱ひげ 図として Fig.4 に示した.ここで,紺色のマーカー は中央値を示している.

Fig.4 Power X, EHP and THP to Ship Speed

Fig.4より,出力XはEHPよりもTHPに良く一致し ていることがわかる.特に,出力Xが300[kW]以上 の高出力域では,THP 曲線に非常に近い傾向を示し ている.一方で,300[kW]以下の出力域ではあまり THP 曲線に一致していないデータや,観測データが 不十分で検討が行えなかった出力域があった.

5. まとめ

先行研究で示された,船の推進に必要な動力を示 す有効出力 EHP と出力 X の関連性についてさらなる 検討を行った.また,出力 X を解析する過程で算出 する回転動力 RHP についても,長期間のデータを元 に RHP の変化について検討を行った.

まず,RHP については,入渠後の日数経過によっ てプロペラが汚損し,RHP が増加することがわかっ た.RHP の出力増加率は季節によって変化し,海水 温度による影響が推察されるが,年によって変化の 傾向に差異があることがわかった.RHP に着目する ことで,プロペラの汚損状態や推進性能に及ぼす影 響の推定が行える可能性がある.今後の研究で, RHP の変化についての数式モデルを構築して,船舶 の実海域上での出力増加を推定する一つの手法を開 発することが期待される.

次に,出力 X と EHP の比較については,汚損による影響と風や波による影響をできる限り排除して出

カXを求めると,EHPではなくTHPに近い傾向が示 されることがわかった.しかし,航海中の出力のデ ータが偏在しているため,一部の出力域では十分な 検討を行うことができなかった.先行研究では, EHPと出力Xのずれの原因として,RHPの算出に翼 角の変化を考慮していない点を挙げているが,今回 は翼角の影響について調べることができなかったた め,今後の課題としたい.

参考文献

- Taisuke Inoue, Hiroyasu Kifune, Hideyuki Kashima, Toshifumi Hayashi, Yosuke Kitano, Ken Katsumi, "Relation between Ship Speed and Horsepower of CPP in Actual Sea Condition", Proc. of 88th JIME Conference (2018), pp. 93-96
- (2) 鈴木 三郎,中井 昇,海洋生物付着による船底 汚損の影響について — CPP 装備船での航走実 験結果の検討—,日本航海学会論文集 68 巻 (1983), pp. 57-58
- (3) 辻本 勝, 武隈 克義, シーマージンの設定法に ついて 一内航コールタール油槽船一, 日本造船 学会論文集 第 195 号(2004), pp. 163-170
- (4) 宮本雅史,実海域中推進性能の推定と評価,日本船舶海洋工学会論文集 第4号(2006), pp.193-201
- (5)藤原 敏文,上野 道雄,二村 正,船体に働く風
 圧力の推定,日本造船学会論文集 第 183 号
 (1998), pp.77-90
- (6) 辻本 勝,柴田 和也,黒田 麻利子,高木 健,波 浪中抵抗増加の実用的修正法,日本船舶海洋工
 学会講演会論文集 第6号 (2008), pp. 27-30